
1

Lab 13 Controllers and Modulation

Alesis QX25 MIDI Controller

Connect the USB cable to the QX25 MIDI Controller and then to the computer.
Make sure the rear panel switch is in the USB position.

Setup

If you haven't already done so, download and unzip m208Lab13.zip to your
Desktop.

Mac Only - Open Au Lab

In order to use MIDI output on the Mac you must open Au Lab before opening
miniAudicle. This is not necessary if you are using Windows.

Open miniAudicle

Quit and restart miniAudicle. Restarting miniAudicle may not always be
necessary, but if your program stops responding to MIDI input that's the first
thing to try. Set m208Lab13 to the working directory in miniAudicle. If you've
been working with other MIDI devices, remove all shreds and save any files
you've been working on.

2

Identify the MIDI Input and MIDI Output Device Numbers

Open Terminal and run the chuck --probe command to list the available Audio
and MIDI input and output devices. This command works on both Mac and
Windows but must be run from a Terminal window. The MIDI devices are
shown at the end of the list and the device number is shown in brackets. There is
a second Mac only option: choose Device Browser from the miniAudicle
Window menu.

If you've already done the nanPAD2 lab you can reuse some of the following
code.

ChucK MIDI Event Documentation

ChucK contains built-in MIDI classes to allow for interaction with MIDI
based software or devices.

MidiIn min;
MidiMsg msg;

// open midi receiver, exit on fail
if (!min.open(0)) me.exit();

while(true)
{
 // wait on midi event
 min => now;

 // receive midimsg(s)
 while(min.recv(msg))
 {
 // print content
 <<< msg.data1, msg.data2, msg.data3 >>>;
 }
}
...

MidiIn is a subclass of Event, and as such can be ChucKed to now.
MidiIn then takes a MidiMsg object to its .recv() method to access the
MIDI data.

As a default, MidiIn events trigger the broadcast() event behavior.

http://chuck.cs.princeton.edu/doc/language/event.html#midi

http://chuck.cs.princeton.edu/doc/language/event.html#midi

3

MIDI Documentation Example

Run the above code in miniAudicle. It's called midiIn.ck and it's in the
m208Lab13 folder.

144 decimal is 90 hex and 128 decimal is 80 hex. These are the staus bytes for a
note on (NON) and a note off (NOF).
Problems

If you don't see anything MIDI message printouts in the Console Monitor
maybe you're trying to connect to an invalid MIDI device number. On my
computer the QX25 keyboard was input device 1, not 0. Change this line and
run the program again.

// open midi receiver, exit on fail
if (!min.open(1)) me.exit();

Play some keys, turn some knobs, move the pitch wheel, mod wheel, and press
some pads. You should see messages like this appear in the Console Monitor
window.

4

Remove all shreds. Save the file. Quit and restart miniAudicle. Restarting
miniAudicle may not always be necessary, but if your program stops responding
to MIDI input that's the first thing to try.

MIDI Messages

The majority of MIDI messages consist of three numbers called the status byte,
data 1 byte, and data 2 byte. Chuck calls them msg.data1, msg.data2, and
msg.data3. All three numbers are 8 bit numbers that range from 0 to 255

(28 −1). Status bytes range from 128 − 255 (80-FF hex) and data bytes range
from 0 − 127 (0-7F hex).

Status byte messages are divided into eight categories, the most common being
Note Off, Note On, Control, Program Change, and Pitch Bend messages. Each
of the eight status categories can send messages to 16 different MIDI channels
independently. Each of the 16 channels can play a different instrument.

The output from the first example program displayed the MIDI status bytes in
decimal format. It is MUCH easier to decipher MIDI messages when the status
byte is displayed in the hexadecimal (base 16) number system. Create this
program and you'll see what I mean.

byte2hex.ck

5

You should see these results in the Console Window.

midiInExample.ck

Save midiDocExample.ck as midiInExample.ck. Modify the opening lines to
read the input args() and add the byte2hex() function. Then enter this code.

6

7

Restart miniAudicle but don't run the code just yet. Instead of changing the
MIDI Input device number in code, enter its number in miniAudicle's
arguments text field.

If you're running midiInExample.ck from the Terminal, add :1 after .ck like this.

QX25 Controls

Besides the piano keys, there are several other knobs, pads, switches, sliders and
wheels that send MIDI messages.

8

Here's a map of the keyboard controls and the messages they send.

STATUS	
 HEX DATA	
 1 DATA	
 2
msg.data1 mgs.data2 msg.data3 Comments

A 90 60 0-­‐127 Note	
 On
80 60 ignored Note	
 Off

B B0 14 0-­‐127 Control	
 14
C B0 15 0-­‐127 Control	
 15
D B0 16 0-­‐127 Control	
 16
E B0 17 0-­‐127 Control	
 17
F B0 18 0-­‐127 Control	
 18
G B0 19 0-­‐127 Control	
 19
H B0 20 0-­‐127 Control	
 20
I B0 21 0-­‐127 Control	
 21
J 90 48 0-­‐127 Pad	
 1	
 Note	
 On

80 48 0 Pad	
 1	
 Note	
 Off
K 90 49 0-­‐127 Pad	
 2	
 Note	
 On

80 49 0 Pad	
 2	
 Note	
 Off
L 90 50 0-­‐127 Pad	
 3	
 Note	
 On

80 50 0 Pad	
 3	
 Note	
 Off
M 90 51 0-­‐127 Pad	
 4	
 Note	
 On

80 51 0 Pad	
 4	
 Note	
 Off
N E0 0 0-­‐127 Pitch	
 Wheel
O B0 1 0-­‐127 Mod	
 Wheel
P B0 22 0-­‐127 Control	
 22
Q C0 2 65 Program	
 Change

9

qx25Example1.ck

Save midiInExample.ck as qx25Example1.ck and enter this code.

10

11

Command Line Arguments

If you need MIDI Input device 1 and MIDI Output device 2 enter these
arguments in miniAudicle…

or in Terminal:

Play Chords With Each Key Press

Make these changes and you'll hear a four note chord on each note played.

12

qx25Example2.ck

Save midiInExample.ck as qx25Example2.ck. This example uses a STK
instrument. It's monophonic so you can only play one note at a time. Try
pressing the octave up down buttons on the QX25 to change octaves.

13

The ChucK documentation for Moog shows several control parameters. We can
use the scale data function above to map the QX25 controls to these parameters.

[ugen]: Moog (STK Import)
▪ STK moog-like swept filter sampling synthesis class.
▪ see examples: moogie.ck

 This instrument uses one attack wave, one
 looped wave, and an ADSR envelope (inherited
 from the Sampler class) and adds two sweepable
 formant (FormSwep) filters.

 Control Change Numbers:
 - Filter Q = 2
 - Filter Sweep Rate = 4
 - Vibrato Frequency = 11
 - Vibrato Gain = 1
 - Gain = 128

 by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

http://chuck.cs.princeton.edu/doc/examples/stk/moogie.ck

14

extends StkInstrument
(control parameters)

• .filterQ - (float , READ/WRITE) - filter Q value [0.0 - 1.0]
• .filterSweepRate - (float , READ/WRITE) - filter sweep rate [0.0 - 1.0]
• .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
• .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
• .afterTouch - (float , WRITE only) - aftertouch [0.0 - 1.0]

(inherited from StkInstrument)
• .noteOn - (float velocity) - trigger note on
• .noteOff - (float velocity) - trigger note off
• .freq - (float frequency) - set/get frequency (Hz)
• .controlChange - (int number, float value) - assert control change

Range Scaling

The MIDI knobs, wheels, and sliders output data in the range from 0 − 127.
Many ChucK methods expect numbers in the range of 0 − 1.0. It would be nice
to have a generic function that could take a value from on range and scale it to
another range.

<<< "DECIBELS OUT scale 0-127 in to -100-0", "" >>>;

http://chuck.cs.princeton.edu/doc/program/ugen_full.html#StkInstrument

15

Output

MIDI Example 4

Save qx25Example2.ck as qx25Example3.ck and add these lines.

16

17

}
else if (msg.data1 == 0xB0 && msg.data2 == 22) // slider S1
{

scaleData(msg.data3, 0, 127, 0, 1) => moogie.gain;
<<< "volume", moogie.gain() >>>;

}
else if (msg.data1 == 0xB0 && msg.data2 == 14) // knob 1
{

scaleData(msg.data3, 0, 127, 0, 1) => moogie.filterQ;
<<< "filterQ", moogie.filterQ() >>>;

}
else if (msg.data1 == 0xB0 && msg.data2 == 15) // knob 2
{

scaleData(msg.data3, 0, 127, 0, 1) => moogie.filterSweepRate;
<<< "filterSweepRate", moogie.filterSweepRate() >>>;

}
else if (msg.data1 == 0xB0 && msg.data2 == 16) // knob 3
{

scaleData(msg.data3, 0, 127, 0, 255) => moogie.vibratoFreq;

<<< "vibratoFreq", moogie.vibratoFreq() >>>;
}
else if (msg.data1 == 0xB0 && msg.data2 == 17) // knob 4
{

scaleData(msg.data3, 0, 127, 0, 1) => moogie.vibratoGain;
<<< "vibratoGain", moogie.vibratoGain() >>>;

}
}

}

Twiddle the knobs as you play a note, especially knobs 3 and 4. Experiment with
the scaleData output range for vibratoFreq.

MUSC 208 Winter 2014
John Ellinger Carleton College

